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ABSTRACT

The seasonal-latitudinal and the diurnal variations of composition observed by

mass spectrometers on the OGO 6 satellite are represented by two simple empirical

formulae, each of which uses only one numerical parameter. The formulae are of

a very general nature and predict the behavior of these variations at all heights and

for all levels of solar activity; they yield a satisfactory representation of the corre-

sponding variations in total density as derived from satellite drag. It is suggested

that a seasonal variation of hydrogen might explain the abnormally low hydrogen

densities at high northern latitudes in July 1964.

RESUME

Les variations saisonnibres-latitudinales et diurnes de la composition

observdes par les spectrom'tres de masse du satellite OGO 6 sont repr6sen-

t6es par deux formules empiriques simples, n'utilisant chacune qu'un seul

paramitre. Ces formules sont de nature trbs g'n'rale et pr'disent le mode

de variation ' toutes les hauteurs et ' tous les niveaux d'activit6 solaire;

elles fournissent une representation satisfaisante des variations corres-

pondantes de la densite totale derivie du freinage du satellite. On

suggbre qu'une variation saisonnibre de l'hydrogbne pourrait expliquer les

densites d'hydrog'ne anormalement faibles observges, en juillet 1964, aux

hautes latitudes septententrionales.
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HOHMEXT

Ce3OHHO-MMPOTHbie M CYTOU.Hbie m3meHeHXR COCTaBa KOTOpbie Ha6illoza-

jimcb mace-cneKTPCmeTPOM Ha CnYTHxKe OGO 6 BbipaxceHbl ZBYMq rIPOCTbIM14

3mnmpxqecKmmx cDopmyjiamm, Kaxgaa x3 KOTOPMX YnOTpe6RReT TOJIBKO OAZH

umftoBol napameTp. TOYMYRN RBRRMTCR oqeHb o6merO Tm5a m npezcKa3m-

Ba.IOT XOZ 3TZX m3meHeHXk Ha BceX BbICOTax X Ha Bcex YPOBHRX CORHeqHO9

AeRTejibHOCTM; OHX zalOT YAOBjieTBOPMTeJIBHoe npeACTaBReHme 0 COOTBeT-

CTByMlgI4X x3meHeHl4RX o6mek nJIOTHOCTM KOTopaH BMBOZZTCH M3 Apara

CEYTHmxa. IlpezjiaraeTCH qTO ce3OHHoe m3meHeHxe B090poza moxceT o6lqc-

HMTL allopmarLHO HX3Kxe YPOBHM Bogopoga Ha BbICOFMX ceBepHbIX WMY)OTax

B mioi(e 1964 r.

vi



VARIATIONS IN THERMOSPHERIC COMPOSITION: A MODEL BASED ON

MASS-SPECTROMETER AND SATELLITE-DRAG DATA

L. G. Jacchia

1. THE PROBLEM

One of the most remarkable discoveries in upper-atmosphere physics has been

the finding, through the analysis of mass-spectrometer data on the OGO 6 satellite

[Hedin et al., 1972, 1973], that all the known types of thermospheric variation are

accompanied by large variations in composition that are not accounted for by static-

diffusion models, clearly indicating the presence of large-scale convection phenomena.

The importance of large-scale thermospheric circulation on atmospheric composition

had been foreseen by Johnson [1964] : "Descending currents over the winter polar

regions are to be expected, with a resulting enrichment of the oxygen content of the

ionosphere there. There must be corresponding upward currents, either over the

summer polar regions, low latitudes, or both; the nitrogen content of the atmosphere

at ionospheric levels ought to be enriched where this occurs, due to a selective loss

of oxygen by outflow at higher levels. " Large seasonal-latitudinal variations of

helium were discovered in 1967-1968 from mass-spectrometer, optical, and satellite-

drag data; since it was difficult to think of the behavior of helium as being unique,

similar variations should clearly have been expected for the other atmospheric con-

stituents. The OGO 6 results have shown that changes in composition occur not only

This work was supported in part by grant NGR 09-015-002 fpm the National Aeronautics
and Space Administration.
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as a result of seasonal variations, but also wherever large-scale thermospheric

motions are involved: in the diurnal and semiannual variation as well as in the

geomagnetic effect.

Hedin et al. [1972, 1973] constructed an ad hoc empirical model to represent

the OGO 6 data on N2, 0, and He at 450 km; all the known and expected variations

were expressed by means of spherical harmonics involving a set of more than 100

numerical coefficients. Although such a model adequately represents the observa-

tions within a narrow range of height and solar activity, safe extrapolation to other

heights and levels of solar activity cannot be expected. A comprehensive, theo-

retical three-dimensional model of atmospheric variations formulated by Volland

and Mayr [1972] is able, in principle, to account for some of the features revealed

by the OGO 6 satellite [Mayr and Volland, 1972], but the complexity of the formula-

tion and our present ignorance of many of the input quantities make its practical

application very difficult. The various models produced by Jacchia [1965, 1970, 1971],

which are widely used for comparison and prediction purposes, were mainly based on

satellite-drag data and represent rather well the observed variations in total density;

large discrepancies, however, show up in the comparison of the models with the

OGO 6 composition data and with 6300 A airglow temperature measurements [Blamont

et al., 1973], also obtained from instruments aboard the OGO 6 satellite. In view of

the demand for practical models that can adequately represent all atmospheric param-

eters, I feel justified in presenting a simple empirical solution that may help fill the

void until something better is found.

2



2. CONDITIONS FOR A MODEL

I shall start by listing the observational conditions that our model must satisfy.

1. According to both the airglow temperature measurements and the composi-

tion data, the maximum diurnal temperature occurs at the equator at the time of

equinoxes but drifts to very high latitudes near the summer pole (possibly to the pole

itself) at the time of solstices.

2. N2, 0, and He show large annual variations, with maxima at the poles at

the time of solstices. For these constituents, Table 1 lists values of A1 log 10 n,

the logarithm of the ratio of the number density at the summer pole to the global

mean, at a height of 450 km, as given by Hedin et al. Part of the seasonal varia-

tion in density is caused by the seasonal variation of temperature, which changes

the scale height of the individual species. Subtracting the effect of temperature, we

are left with A2 log 10 n; this represents the intrinsic seasonal variation, which is

not accounted for by temperature changes. To compute the correction, we have

used a global mean asymptotic ('exospheric') temperature of 1000 K and a correspond-

ing temperature at the summer pole of 1140 K. We shall assume that at the winter

pole, A2 logl0 n has the same value with the opposite sign.

Table 1. Total and intrinsic density excesses
at the summer pole (z = 450 kman).

Constituent A1 log 10 n A2 logl0 n

N2 +0.74 +0.24

O +0.11 -0.15

He -0.55 -0.60

3



3. According to rocket-borne mass-spectrometer data, the seasonal variation

of He at 130 to 150 km is already large [Kasprzak et al. 1968; Krankowski et al.,

1968], comparable to that at 450 kln, while the variation of N2 is quite small. Drag

data from low satellites in polar orbit also exclude large seasonal variations of N2 .

4. Densities from satellite-drag data [Jacchia, 1971; Keating et al., 1973] show

that at 600 to 800 km, the seasonal variation of helium is somewhat smaller than that

shown in Table 1, with A2 log 1 0 n of the order of -0. 35 or -0. 4 (accounting for some

degree of smoothing inherent in the drag method).

5. The curves of the diurnal variation of N2, 0, and He are phase-shifted with

respect to each other. According to Hedin et al., the maximum density at 450 km

occurs at 14. 9 local solar time (LST) for N2, at 14.4 for 0, and at 10h0 for He. On

the other hand, according to satellite-drag data [Jacchia et al., 1973], the maximum

of the total density always occurs around 14!'35, irrespective of height, at least

within the limits of 200 and 800 km. Around 600 to 800 km, the density peaks at

14h4 even when the atmosphere is nearly pure helium.
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3. SEASONAL-LATITUDINAL VARIATIONS; HYDROGEN

Concerning point 1, no particular difficulty arises in modifying the model of

the diurnal temperature variation so as to have the maxima and minima shifted to

higher latitudes ardund the solstices. In the Jacchia models, we have 4 B = 50'

where cB is the latitude of the maximum-temperature point, and 6 is the declina-

tion of the sun. All that is needed is to make B = kSo, with 1 < k < 7r/2E, where

E is the obliquity of the ecliptic; all the other equations remain the same. With

the modification I recently suggested [Jacchia, 1973] for a latitude dependence for

the parameter n (see equation (4) in the present paper), continuity across the poles

is ensured for both temperatures and temperature gradients. Our recent finding

[Jacchia et al., 1973] that k = 1 was predicated on the premise that there was no

intrinsic seasonal variation of atomic oxygen. If we assume that such a variation

does exist, we can adjust the total variation of 0 so that it adapts to any given tem-

perature variation at the poles and still gives us the observed value of Al log p.

In other words, since the total densities derived from satellite drag are mostly

atomic oxygen densities, we can trade changes in oxygen densities for changes

in temperature and still come out with essentially the same total densities. The

OGO 6 mass-spectrometer data show that k must lie between 2. 1 and 3. 84 (= Tr/2E),

so we shall assume k = 3.

Proceeding to point 2, if we plot A2 logl0 n at a height of 450 km above the

summer pole, as given in Table 1, against the mass M of the constituent (Figure 1),

we see that the straight line A2 log1 0 n = 0. 035 (M - 20. 8) represents the observa-

tional data within the limits of error. Since we have to deal with a phenomenon

5
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Figure 1. Intrinsic excess of three atmospheric constituents at 450 km above the
summer pole, plotted against their masses.
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originating with diffusion, we would expect that 20. 8 is the effective mean molecular

mass involved in the diffusion process. At 450 kin, however, the mean molecular

mass for a temperature of 1000 K is about 15.6 (I am using a modification of my 1971

model, based mainly on OGO 6 composition, which I call model 42E; at 450 kmn,

however, where the atmosphere is nearly pure atomic oxygen, the choice of one

model instead of another does not affect the mean molecular mass to any degree).

To find a mean molecular mass M = 20. 8, we have to go down by almost 5 density-

scale heights, to 214 kin, where the total density is over 100 times greater than it

is at 450 km. We shall now make the assumption that A2 log10 n is always propor-

tional to M - M , where M is the mean molecular mass at the height at which the

density is exactly 100 times greater than it is at the height under consideration.

We now have to consider a factor that will give us the observed seasonal-

latitudinal distribution. A logical choice is the difference, at a given height z,

between the mean diurnal temperature at latitude 4, Tm(z, 4), and the mean equatorial

temperature, Tm(z, 0). We can thus write

A2 logl 0 n = c(M - M ) [Tm(z, ) - Tm(, 0)] . (1)

The constant c has the approximate value c = 0. 00024. For simplicity, let us

identify Tm with T1/2, the arithmetic mean between the daytime maximum and the

nighttime minimum temperature. Following Jacchia et al. [19731, we can write

TM/T 1/2(-, 0) = 1 + (r/2), where TM is the global maximum of the asymptotic

temperature; we then obtain

r m in
T1/2(2(, )) - T = 1 / 2 / 2 (o, 0) (cos + sin 0 - 1) . (2)

7



Here, 7 = - and 8 = | + BI. In the quoted paper, we had derived the value

2. 2 for m, but m = 2.0 would seem more desirable, since it would make T1/ 2 (oo, 0)

constant throughout the year and equal to the arithmetic mean of the mean asymptotic

temperatures at the north pole, T1/ 2 (o, +900), and at the south pole, T 1 / 2 (oo, -90°).

Incidentally, with this model, the maximum and minimum values of T 1/ 2 (oo, ) are

always found at the poles, except at the equinoxes, where T 1/ 2 (o, p) is the same at

all latitudes. To derive T 1/2(z , ) from T 1/ 2(m, ), use has to be made of model

temperature profiles.

Figure 2 shows profiles of A1 log 1 0 n and A2 log 1 0 n computed from equation (1)

for all major atmospheric constituents for an asymptotic temperature of 1000 K. As

can be seen, the conditions posed in points 3 and 4 have been met: A2 log n is small

at lo he+ights (-1 0 kmrn) fnor N2 xxhil for HAe, it is rit large; alsoo the latter

reaches its maximum between 250 and 300 km and is considerably smaller at 700 km

than at 450 km.

In Figure 2 we have also added dashed curves for the seasonal variations of

hydrogen computed in the same manner, although we cannot expect hydrogen, whose

concentration is mainly conditioned by thermal escape, to follow the same rules as the

other constituents. Good reasons exist, however, for suspecting that hydrogen

does, at leat qualitatively, follow the general rule and show depletion at the summer

pole. First, very low densities were derived from the drag of the Explorer 19 and

Echo 2 satellites in July 1964, at the absolute minimum of solar activity. The

effective heights at which the densities were derived were 750 and 1170 km, and, on

the basis of the models, hydrogen should have been the major constituent at those

heights (and practically the sole constituent at 1170 km). According to these data,

8
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Figure 2. Excess of individual atmospheric constituents above the summer pole as
predicted by equation (1). Top: excesses with respect to the global mean.
Bottom: intrinsic excesses (i. e., corrected for pure temperature effects).
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the hydrogen concentration was smaller than that given by the Kockarts-Nicolet

[1962, 1963] model, although all recent measurements [Tinsley, 1970, 1973;

Vidal-Madjar et al., 1973] would indicate an overall hydrogen density in excess of

that of the Kockarts-Nicolet model by a factor of 2 or 3. The semiannual variation

is insufficient to explain this large hydrogen depletion. It is significant that in July

1973, the perigee of both satellites was in the north polar regions; also, the eccen-

tricity of the Echo 2 orbit was near maximum (0. 02), allowing us to detect deviations

from spherical symmetry in the atmosphere. A seasonal variation of hydrogen in the

direction indicated by equation (1) would certainly help solve the problem. A further

indication that such a variation might exist is offered by the hydrogen densities

derived by Slowey [1973] at a height of 3600 km from the drag of satellite 1963 30D,

which show lower values toward the summer pole.

10



4. DIURNAL VARIATION

Let us now consider point 5. It is clear that the differences in the hours of

maximum density for N 2 , 0, and He at 450 km are not proportional to the differ-

ences in their masses. They are, however, linearly related to M/M, as shown

in Figure 3, where we have taken M = 15. 6. The straight line in the diagram

corresponds to the equation

t max(LST) = 15.h8 - 1. 5 -M (3)

If we assume that this relation holds at all heights, we obtain the diagram of

Figure 4, in which the hour of maximum density is plotted against height for the

major atmospheric constituents, with the exception of hydrogen, for an asymptotic

temperature of 1000 K. The heavier curve is the weighted mean of the hours of

maxima for the individual constituents; for the weighting factor, we have used

W = nMa, the mass density multiplied by the amplitude a of its diurnal variations.

As can be seen, all conditions of point 5 are met. Although the hour of maximum

varies greatly with height for the individual constituents, especially for helium, the

weighted mean of the times of maximum - which should approximate that of the total

density variation - remains almost constant around 14.4 for heights below 600 km

and rises only very slightly at greater heights. In pure helium (or pure atomic

oxygen, for that matter), when M = M, equation (3) gives t = 14.3, in agreement

with observations. It is interesting that if we take W = nM - i. e., if we drop the

amplitude from the weighting factor - the weighted mean of the hours of maxima

stays constant at 14. h32, within ±+o.03, up to 800 km.

11
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Figure 3. Hour of maximum in the diurnal density variation of three atmospheric
constituents at 450 km plotted against M/M.
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mean of the individual times of maximum and should approximate that of
the total density variation.
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If we want to use equation (3) in conjunction with Jacchia's model of the diurnal

variation, we encounter some difficulties. The longitudinal temperature variation,

with the modifications proposed by Jacchia et al. [1973], can be schematically

represented by

ni
T = A cos 1 (H + p) (4)

where A is a function of p, tB, and solar activity; H is the hour angle of the sun; and

n and p are constants whose most recently derived values are n = 3. 0, P = -35 . 0. If

we identify p with tmax - 12h and take tmax from equation (3), we are left with as

many different temperatures as there are atmospheric constituents - which does not

make any physical sense but will give essentially correct density variations for each

h
species. If we make M/M = 1, then equation (3), as we said, gives t__ = 14.3; this

corresponds to p = -34 5, almost exactly the value given above, which was derived

from satellite drag by means of static models. By employing this value of p for

computing the actual temperature variation, we would be no worse off than we are at

present when we use static models to compute it. The correct solution, of course,

will have to wait for a workable three-dimensional dynamical model.

14



5. CONCLUSIONS

We have been able to represent the seasonal-latitudinal and the diurnal variations

of composition in the thermosphere by using two empirical formulae, each of which

uses only one numerical parameter. The general nature of the formulae makes them

applicable to all heights and levels of solar activity. Although no obvious large

discrepancies with observations can be detected at present, it will be interesting to

watch how well the formulae hold when observations of composition are extended to

a wider range of heights and solar activity. If further observations bear out the

formulae, a consideration of their structure might provide better insight into the

mechanism of the variations.

We would have liked to find similar formulae for the changes in composition

observed in the semiannual variation and in the geomagnetic effect, and we hope

that a further analysis of the original data may provide a lead in this direction.

Considering the greater complexity (and our less complete understanding) of these

types of variation, the material published so far does not seem to contain enough

information to attempt such a task.
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6. ADDENDUM

Observations by von Zahn et al. [1973], contained in a paper received after this

manuscript had been prepared for publication, confirm the amplitude of the seasonal

variation of argon and helium as predicted by equation (1). Argon is found to vary by

at least a factor of 10, with a maximum at the summer pole; the helium variation,

with a range from 1 to 20, is nearly twice as large as at 450 km. All this is in excel-

lent agreement with the curves shown in Figure 2.
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